Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.52 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Os veículos elétricos são cada vez mais vistos como uma das soluções para combater a crescente emissão de gases poluentes por parte dos veículos movidos por um motor de combustão interna. Estes caracterizam-se por uma emissão de gases poluentes nula e por um rendimento muito mais elevado podendo chegar aos 90%.
Uma das grandes desvantagens dos veículos elétricos é o armazenamento de energia, pois as baterias utilizadas apresentam uma densidade de energia muito menor, relativamente ao combustível utilizado nos veículos de motor a combustão, contudo tem-se feito grandes progressos nessa área.
Neste projeto desenvolveu-se um conversor capaz de controlar motores DC e AC. Este foi também criado a pensar no envio de energia das baterias para a rede elétrica e vice-versa, contribuindo assim para uma melhor gestão da rede. Também se pode utilizar juntamente com painéis solares, para armazenar a sua energia nas baterias, ou como inversor solar enviando diretamente para a rede.
O controlo dos motores foi executado em malha fechada regulando o binário, através da corrente, ou a velocidade. Para o motor de corrente contínua a topologia usada foi a ponte H, permitindo assim o controlo do motor nos dois sentidos, bem como aplicar travão regenerativo.
Para o motor de corrente alternada, utilizou-se um motor síncrono de ímanes permanentes, utilizando para o seu controlo o conversor como inversor trifásico.
Fez-se uma análise teórica, criando modelos do conversor, sendo depois feita simulação do seu funcionamento através da ferramenta de simulação MATLAB/Simulink.
Verificou-se que o conversor contruído permitia controlar a corrente e velocidade em ambos os motores usados.
Utilizou-se um kart para comparar o desempenho dos dois motores, bem como o seu controlo, em testes de aceleração, velocidade e eficiência.
Electrical vehicles are increasingly seen as one of the solutions to battle the increase of CO2 emissions by internal combustion vehicles. These are characterized by zero CO2 emissions and a much higher efficiency, reaching up to 90%. One of the biggest drawbacks of electric vehicles is energy storage. The batteries used have a much lower energy density compared to the fuel used in internal combustion vehicles, however major progress has been made in this area. In this project, we developed a converter capable of controlling both DC and AC electric motors. It was also created to send energy from batteries directly to the grid and vice-versa, contributing for a better grid management. It can also be used together with solar panels to store the harvested energy on batteries, and as a solar inverter, transferring energy directly to the grid. The control was made in a closed loop configuration, regulating parameters such as binário, through the applied current, and speed. An H-bridge topology was used for the DC motor, allowing to be turned both ways, as well as allowing for regenerative braking. The AC motor used was a permanent magnet synchronous motor, which used the converter as a three phase inverter. A theoretical analysis was performed to create the models of the converter. These models were then used to perform simulations using MATLAB/Simulink simulation tool. It was verified that the built converter, allowed for controlling the current and speed in both motors used A go-kart was used to compare the performance of both motors in acceleration, speed and efficiency tests.
Electrical vehicles are increasingly seen as one of the solutions to battle the increase of CO2 emissions by internal combustion vehicles. These are characterized by zero CO2 emissions and a much higher efficiency, reaching up to 90%. One of the biggest drawbacks of electric vehicles is energy storage. The batteries used have a much lower energy density compared to the fuel used in internal combustion vehicles, however major progress has been made in this area. In this project, we developed a converter capable of controlling both DC and AC electric motors. It was also created to send energy from batteries directly to the grid and vice-versa, contributing for a better grid management. It can also be used together with solar panels to store the harvested energy on batteries, and as a solar inverter, transferring energy directly to the grid. The control was made in a closed loop configuration, regulating parameters such as binário, through the applied current, and speed. An H-bridge topology was used for the DC motor, allowing to be turned both ways, as well as allowing for regenerative braking. The AC motor used was a permanent magnet synchronous motor, which used the converter as a three phase inverter. A theoretical analysis was performed to create the models of the converter. These models were then used to perform simulations using MATLAB/Simulink simulation tool. It was verified that the built converter, allowed for controlling the current and speed in both motors used A go-kart was used to compare the performance of both motors in acceleration, speed and efficiency tests.
Description
Keywords
Conversor Motor DC Motor AC Transformada Clarke-Park Carro elétrico Converter DC motor AC motor Clarke-Park transformation Electric car Engenharia Eletrotécnica - Telecomunicações . Faculdade de Ciências Exatas e da Engenharia