Repository logo
 
Publication

The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic

dc.contributor.authorFerreira, Jorge N. M.
dc.contributor.authorFleischmann, Peter
dc.date.accessioned2023-02-13T16:09:40Z
dc.date.available2023-02-13T16:09:40Z
dc.date.issued2017
dc.description.abstractLet G be a Sylow p-subgroup of the unitary groups GU(3, q2), GU(4, q2), the symplectic group Sp(4, q) and, for q odd, the orthogonal group O +(4, q). In this paper we construct a presenta tion for the invariant ring of G acting on the natural module. In particular we prove that these rings are generated by orbit products of variables and certain invariant polynomials which are images under Steenrod operations, applied to the respective invariant form defining the corresponding classical group. We also show that these generators form a SAGBI basis and the invariant ring for G is a complete intersection.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira, J. N., & Fleischmann, P. (2017). The invariant rings of the Sylow groups of GU (3, q2), GU (4, q2), Sp (4, q) and O+ (4, q) in the natural characteristic. Journal of Symbolic Computation, 79, 356-371.pt_PT
dc.identifier.doi10.1016/j.jsc.2016.02.013pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/5033
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationMODULAR INVARIANT THEORY OF FINITE UNITARY GROUPS
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectInvariant ringspt_PT
dc.subjectSAGBI basespt_PT
dc.subjectModular invariant theorypt_PT
dc.subjectSylow subgroupspt_PT
dc.subjectFinite classical groupspt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleThe invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristicpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMODULAR INVARIANT THEORY OF FINITE UNITARY GROUPS
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBD%2F30132%2F2006/PT
oaire.citation.endPage371pt_PT
oaire.citation.startPage356pt_PT
oaire.citation.titleJournal of Symbolic Computationpt_PT
oaire.citation.volume79pt_PT
oaire.fundingStreamFARH
person.familyNameMarques Ferreira
person.givenNameJorge Nélio
person.identifier.orcid0000-0003-1364-5791
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb136ee8d-f897-4ac6-a748-1fe2606bbbbf
relation.isAuthorOfPublication.latestForDiscoveryb136ee8d-f897-4ac6-a748-1fe2606bbbbf
relation.isProjectOfPublication29388e5c-0d01-4e9b-ac67-3a1268e838d6
relation.isProjectOfPublication.latestForDiscovery29388e5c-0d01-4e9b-ac67-3a1268e838d6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The invariant rings of the Sylow groups.pdf
Size:
386.3 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: