Repository logo
 
Loading...
Profile Picture
Person

Sousa Luís, Catarina Grace

Search Results

Now showing 1 - 10 of 49
  • A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials
    Publication . Gonçalves, João L.; Figueira, José A.; Rodrigues, Fátima P.; Ornelas, Laura P.; Branco, Ricardo N.; Silva, Catarina L.; Câmara, José S.
    The volatile metabolomic patterns from different raw materials commonly used in beer production, namely barley, corn and hop-derived products - such as hop pellets, hop essential oil from Saaz variety and tetra-hydro isomerized hop extract (tetra hop), were established using a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). Some SPME extraction parameters were optimized. The best results, in terms of maximum signal recorded and number of isolated metabolites, were obtained with a 50/30 μm DVB/CAR/PDMS coating fiber at 40 °C for 30 min. A set of 152 volatile metabolites comprising ketones (27), sesquiterpenes (26), monoterpenes (19), aliphatic esters (19), higher alcohols (15), aldehydes (11), furan compounds (11), aliphatic fatty acids (9), aliphatic hydrocarbons (8), sulphur compounds (5) and nitrogen compounds (2) were positively identified. Each raw material showed a specific volatile metabolomic profile. Monoterpenes in hop essential oil and corn, sesquiterpenes in hop pellets, ketones in tetra hop and aldehydes and sulphur compounds in barley were the predominant chemical families in the targeted beer raw materials. β-Myrcene was the most dominant volatile metabolite in hop essential oil, hop pellets and corn samples while, in barley, the predominant volatile metabolites were dimethyl sulphide and 3-methylbutanal and, in tetra hop, 6-methyl-2-pentanone and 4-methyl-2-pentanone. Principal component analysis (PCA) showed natural sample grouping among beer raw materials.
  • Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography
    Publication . Perestrelo, Rosa; Silva, Catarina L.; Câmara, José S.
    An improved, reliable and powerful analytical strategy based on digitally controlled microextraction by packed sorbent (MEPS) combined with ultrahigh pressure liquid chromatography (UHPLC) was validated for the simultaneous identification and quantification of major furanic derivatives, namely 5-hydroxymethyl-2-furaldehyde (5HMF), 5-methyl-2-furaldehyde (5MF), 2-furaldehyde (2F) and 2-furyl methyl ketone (2FMK), in fortified wines. To enhance the extraction efficiency of the target furanic derivates, several influencing extraction parameters, such as number of loading cycles, nature of elution solvent and elution volume, were evaluated and optimized. In addition the ability of different MEPS sorbent materials, namely C2, C8, C18, SIL, M1, R-AX, R-CX and PGC, were also tested. The optimal analytical conditions involved loading 3×200 μL of wine samples through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 200 μL MeOH:H2O (95:5, v/v). The furanic derivates separation was achieved using a CORTECS UPLC(®) C18 analytical column in an ultrafast chromatographic run (within 4 min). The method performance was assessed for dry/medium dry (D/MD) and sweet/medium sweet (S/MS) model wines in terms of selectivity, linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision and matrix effect, using model wine matrix-matched calibration. Good linearity was obtained with a regression coefficient (r(2)) higher than 0.992. A good precision was attained (RSD<5%) and low LODs were achieved for D/MD (4.5-129.3 ng L(-1)) and S/MS (6.9-285.2 ng L(-1)) model wines. The quantification limits (LOQ) for D/MD model wines ranged from 14.9 to 431.0 ng L(-1), whereas for S/MS model wines range from 23.1 to 950.5 ng L(-1). The method also afforded satisfactory results in terms of accuracy, ranging from 74 to 97% for D/MD wines and between 84 and 99% for S/MS wines. The MEPS(C8)/UHPLC-PDA analytical strategy was successfully applied to analyze furanic derivates in 26 fortified Madeira wines from different types (D/MD, S/MS) and ages. The obtained results revealed the analytical strategy as a suitable tool which combines sensitivity, effectiveness, reduced analysis time and simple analytical procedure. Principal component analysis (PCA) suggested that fortified wines can be organized based on their age on PC1, which are mainly characterized by 5HMF.
  • Unraveling Vitis vinifera L. grape maturity markers based on integration of terpenic pattern and chemometric methods
    Publication . Perestrelo, Rosa; Silva, Catarina; Silva, Pedro; Câmara, José S.
    The current research attempts to provide an alternative tool for grape maturity measurement related to the wine composition since, the classical parameters (weight grape berries, sugar content, titratable acidity), commonly used in the winemaking industry, do not provide any sensorial information. In this context, the evolution of terpenic compounds (TC) during ripening of four V. vinifera L. grape varieties - Bual, Malvasia, Sercial (white grapes) and Tinta Negra (red grapes), was investigated, in addition to the establishment of terpenic pattern, using headspace solid phase microextraction (HS-SPME) combined with GC–MS. Using the optimal analytical conditions were identified 62 TC in the investigated V. vinifera L. grapes. The integration of chromatographic and chemometric data provides a powerful strategy to identify potential maturity markers. The maximum potential of mono- and sesquiterpenic compounds was reached at maturity, whereas the highest levels of norisoprenoids were observed at véraison. Partial Least Squares Regression (PLS-R) was employed to describe the relationship between classical parameters and TC. Based on PLS-R models, three monoterpenic (linalool, α-terpineol, carvomenthol), one sesquiterpenic (bicyclogermacrene) and two norisoprenoids compounds (vitispirane I, β-damascenone) could be used to define the optimum harvest date. The obtained results represent a very important tool to support, in an objective way, the winemakers decision for long-term strategic planning based on the sensory potentialities of grape varieties and consequently improving the excellence of Madeira wine.
  • Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines
    Publication . Gonçalves, João; Mendes, Berta Rodrigues; Silva, Catarina L.; Câmara, José S.
    A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.
  • Detecção e caracterização de biomarcadores voláteis em indivíduos com patologias oncológicas
    Publication . Luís, Catarina Grace Sousa; Câmara, José Sousa
    Com a realização deste trabalho, pretendeu-se traçar o perfil padrão da composição volátil típico de fluidos biológicos (urina) de indivíduos sem patologia oncológica (grupo de controlo) comparando-os com os de pacientes (grupo com patologia oncológica). As amostras de urina de ambos os grupos foram analisadas por microextracção em fase sólida em modo de headspace acoplada à espectrometria de massa (HS-SPME-GC/qMS). Com o intuito de aumentar a eficiência de extracção da SPME, foram optimizados alguns parâmetros com influência no processo extractivo, nomeadamente o tipo de fibra, o tempo e a temperatura de extracção. Assim sendo, foram testadas e comparadas seis fibras comercialmente disponíveis, polidimetilsiloxano (PDMS, 100 m), poliacrilato (PA, 85 m), carboxeno-polidimetilsiloxano (CAR/PDMS, 75 m), carbowax-divinilbenzeno (CW/DVB, 65 m), divinilbenzeno-carboxen-polidimetilsiloxano (DVB/CAR/PDMS, 50/30 m) e polidimetilsiloxano-divinilbenzeno (PDMS/DVB, 65 m). A influência do tempo (30, 45, 60 e 75 min) e temperatura (30, 50 e 60 ºC) de extracção foram optimizados de modo a obter uma melhor eficiência de extracção dos compostos voláteis presentes nas amostras de urina. Os melhores resultados foram obtidos usando a fibra carboxeno-polidimetilsiloxano (CAR/PDMS, 75 m), com uma velocidade de agitação de 800 rpm durante 75 min a uma temperatura de 50 ºC. Para os dois grupos em estudo, foram identificados 80 compostos voláteis pertencentes a diversas famílias químicas, nomeadamente, aldeídos, cetonas, derivados benzénicos, compostos terpénicos, ácidos orgânicos, compostos furânicos, compostos sulfurados, fenóis voláteis, ésteres, álcoois superiores e derivados do naftaleno. Os compostos maioritários pertencentes aos grupos analisados foram a 4-heptanona, a 2-pentanona, a acetona, a 2-butanona, o 1(2- furanil)etanona, o 3-metil-3-fenil-2-propenal, o 3,4-dimetilbenzaldeído, o decanal, o dissulfureto de dimetilo, o metanotiol, o 2-metoxitiofeno, o 4-metil-fenol, o p-tert-butil-fenol, o 2,4-bis(1,1- dimetiletil)fenol, o fenol, o m-cimeno, o p-cimeno, o tolueno, o 1-etil-3,5-diisopropilbenzeno, o 2,6-dimetil-7-octen-2-ol, a D-carvona, o vitispirano I e o vitispirano II. O teste One-Way ANOVA foi aplicado aos resultados com o intuito de verificar se existiam diferenças significativas entre os grupos avaliados (Controlo e Oncológico), sendo o dissulfureto de dimetilo, o 2-metoxitiofeno, e o p-cimeno estatisticamente significativos. A aplicação da análise multivariável às amostras de urina das diferentes patologias permitiu diferenciá-las no qual se obteve 81,02% da variância total.A aplicação da análise multivariável às amostras de urina das diferentes patologias permitiu diferenciá-las no qual se obteve 81,02% da variância total. A patologia de Hodgkin é influenciada pelas variáveis heptanal e o 2-metil-3-fenil-2-propenal. O Controlo é afectado essencialmente pelas variáveis p-cimeno, 1,4,5-trimetilnaftaleno e o dissulfureto de dimetilo. O Cólon é influenciado pelo 4-metilfenol, anisole e 1,2-dihidro-1,1,6-trimetil-naftaleno. O 1-octanol e a 3-heptanona influenciam, essencialmente as patologias da Mama e Leucemia.
  • Geographical differentiation of apple ciders based on volatile fingerprint
    Publication . Sousa, António; Vareda, José; Pereira, Regina; Silva, Catarina; Câmara, José S.; Perestrelo, Rosa
    With the globalization of food trade, it’s traceability and genuineness becomes increasingly more difficult. Therefore, it is necessary to develop analytical tools to define the authenticity and genuineness of food-derived products. In the current work, headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME/GC–MS) combined with chemometric tools was used to establish the volatile fingerprint of apple ciders produced in different geographical regions of Madeira Island, in order to define their typicity and to identify putative geographical markers. A total of 143 volatile organic compounds (VOCs) belonging to dif ferent chemical families have been identified, of which 28 were found in all apple ciders independently of geographical region. Esters, terpenic and furanic compounds presented on average a higher contribution for the total volatile fingerprint in cider produced in northern region of the Island, whereas alcohols, acids, volatile phenols, carbonyl compounds and lactones in cider from southern region. Considering the relative areas of the VOCs, 43 revealed statistically significant differences (p < 0.001) between geographical regions, and 11 be tween northern and southern regions. A clear differentiation among cider-producing regions was observed on the developed partial least squares-discriminant analysis (PLS-DA) model. Two alcohols (1-hexanol, 1-octanol), 6 esters (methyl acetate, (Z)-3-hexen-1-ol acetate, ethyl hexanoate, ethyl nonanote, ethyl octanoate, isoamyl oc tanoate) and 1 terpenic compound (limonene), can be considered putative geographic markers due to their discriminatory ability. The results obtained recognize the specific and typical geographical characteristics of the cider, which will allow the forthcoming guarantee for the construction of a sustainable platform for the es tablishment of the authenticity and typicality of the regional cider.
  • Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers: a powerful strategy for breast cancer diagnosis
    Publication . Silva, Catarina L.; Passos, Mário; Câmara, José S.
    A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.
  • A fast method using a new hydrophilic–lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines
    Publication . Silva, Catarina L.; Pereira, Jorge; Wouter, Van G.; Giró, Carme; Câmara, José S.
    This manuscript describes the development and validation of an ultra-fast, efficient, and high throughput analytical method based on ultra-high performance liquid chromatography (UHPLC) equipped with a photodiode array (PDA) detection system, for the simultaneous analysis of fifteen bioactive metabolites: gallic acid, protocatechuic acid, (−)-catechin, gentisic acid, (−)-epicatechin, syringic acid, p-coumaric acid, ferulic acid, m-coumaric acid, rutin, trans-resveratrol, myricetin, quercetin, cinnamic acid and kaempferol, in wines. A 50-mm column packed with 1.7-μm particles operating at elevated pressure (UHPLC strategy) was selected to attain ultra-fast analysis and highly efficient separations. In order to reduce the complexity of wine extract and improve the recovery efficiency, a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a new macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis™ HLB), was performed prior to UHPLC–PDA analysis. The calibration curves of bioactive metabolites showed good linearity within the established range. Limits of detection (LOD) and quantification (LOQ) ranged from 0.006 μg mL−1 to 0.58 μg mL−1, and from 0.019 μg mL−1 to 1.94 μg mL−1, for gallic and gentisic acids, respectively. The average recoveries ± SD for the three levels of concentration tested (n = 9) in red and white wines were, respectively, 89 ± 3% and 90 ± 2%. The repeatability expressed as relative standard deviation (RSD) was below 10% for all the metabolites assayed. The validated method was then applied to red and white wines from different geographical origins (Azores, Canary and Madeira Islands). The most abundant component in the analysed red wines was (−)-epicatechin followed by (−)-catechin and rutin, whereas in white wines syringic and p-coumaric acids were found the major phenolic metabolites. The method was completely validated, providing a sensitive analysis for bioactive phenolic metabolites detection and showing satisfactory data for all the parameters tested. Moreover, was revealed as an ultra-fast approach allowing the separation of the fifteen bioactive metabolites investigated with high resolution power within 5 min.
  • Breast cancer metabolomics: from analytical platforms to multivariate data analysis. A review
    Publication . Silva, Catarina; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.
    Cancer is a major health issue worldwide for many years and has been increasing significantly. Among the different types of cancer, breast cancer (BC) remains the leading cause of cancer-related deaths in women being a disease caused by a combination of genetic and environmental factors. Nowadays, the available diagnostic tools have aided in the early detection of BC leading to the improvement of survival rates. However, better detection tools for diagnosis and disease monitoring are still required. In this sense, metabolomic NMR, LC-MS and GC-MS-based approaches have gained attention in this field constituting powerful tools for the identification of potential biomarkers in a variety of clinical fields. In this review we will present the current analytical platforms and their applications to identify metabolites with potential for BC biomarkers based on the main advantages and advances in metabolomics research. Additionally, chemometric methods used in metabolomics will be highlighted.
  • Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry
    Publication . Silva, C. L.; Câmara, J. S.
    BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.