Repository logo
 

Search Results

Now showing 1 - 10 of 84
  • Peculiar property of noble gases and its explanation through the Enskog--Vlasov model
    Publication . Benilov, E. S.; Benilov, M. S.
    An observation is presented that the ratio of the critical and triple-point temperatures Tcr/Ttp of neon, argon, krypton, and xenon fit within a narrow interval, Tcr/Ttp = 1.803 ± 0.5%, and the same applies to the density ratio, ncr/ntp = 0.3782 ± 1.7% (of the two remaining noble gases, helium does not have a triple point and, for radon, ntp is unknown). We explain this peculiar property by the fact that the molecules of noble gases are nearly spherical, as a result of which they satisfy the Enskog-Vlasov (EV) kinetic model based on the approximation of hard spheres. The EV model has also allowed us to identify two more parameter combinations which are virtually the same for all noble gases.
  • Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different mechanisms and ejection of droplets
    Publication . Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.
    A model of cathode spots in high-current vacuum arcs is developed with account of all the poten tially relevant mechanisms: the bombardment of the cathode surface by ions coming from a pre existing plasma cloud; vaporization of the cathode material in the spot, its ionization, and the inter action of the produced plasma with the cathode; the Joule heat generation in the cathode body; melting of the cathode material and motion of the melt under the effect of the plasma pressure and the Lorentz force and related phenomena. After the spot has been ignited by the action of the cloud (which takes a few nanoseconds), the metal in the spot is melted and accelerated toward the periph ery of the spot, with the main driving force being the pressure due to incident ions. Electron emis sion cooling and convective heat transfer are dominant mechanisms of cooling in the spot, limiting the maximum temperature of the cathode to approximately 4700–4800 K. A crater is formed on the cathode surface in this way. After the plasma cloud has been extinguished, a liquid-metal jet is formed and a droplet is ejected. No explosions have been observed. The modeling results conform to estimates of different mechanisms of cathode erosion derived from the experimental data on the net and ion erosion of copper cathodes.
  • Bifurcation points in the theory of axially symmetric arc cathodes
    Publication . Benilov, M. S.; Cunha, M. D.
    Steady-state current transfer from arc plasmas to axially symmetric cathodes is treated in the framework of the model of nonlinear surface heating. An approach is developed to calculate the bifurcation points at which three-dimensional spot-mode solutions branch off from solutions describing the diffuse mode and axially symmetric spot modes. In particular, the first bifurcation point positioned on the diffuse-mode solution has been calculated, and thus its stability limit, i.e., the current below which the diffuse mode becomes unstable. Calculation results are given for the case of a tungsten cathode in the form of a circular cylinder in high pressure plasmas. The effect produced on the stability limit by variations of control parameters ~cathode dimensions, work function of the cathode material, plasma-producing gas, and its pressure! is studied and found to conform to trends observed experimentally. The stability limit is found to be much more sensitive to variations of control parameters than characteristics of the diffuse mode are, the strongest effect being pro duced by variations of cathode dimensions and of the work function of the cathode material. This finding conforms to the fact that the diffuse-spot transition is difficult to reproduce in the experiment.
  • Numerical investigation of AC arc ignition on cold electrodes in atmospheric-pressure argon
    Publication . Santos, D. F. N.; Lisnyak, M; Almeida, N.; Benilova, L. G.; Benilov, M. S.
    Since experiments cannot clarify the mechanism of current transfer to non-thermionic arc cathodes, this can only be done by means of numerical modelling based on first principles and not relying on a priori assumptions. In this work, the first quarter-period after the ignition of an AC arc on cold electrodes in atmospheric-pressure argon is investigated by means of unified one-dimensional modelling, where the conservation and transport equations for all plasma species, the electron and heavy-particle energy equations, and the Poisson equation are solved in the whole interelectrode gap up to the electrode surfaces. Results are compared with those for DC discharges and analysed with the aim to clarify the role of different mechanisms of current transfer to non-thermionic arc cathodes. It is found that the glow-to-arc transition in the AC case occurs in a way substantially different from the quasi-stationary glow-to-arc transition. The dominant mechanisms of current transfer to the cathode during the AC arc ignition on cold electrodes are, subsequently, the displacement current, the ion current, and thermionic emission current. No indications of explosive emission are found. Electron emission from the impact of excited atoms can hardly be a dominant mechanism either. The introduction of the so-called field enhancement factor, which is used for description of field electron emission from cold cathodes in a vacuum, leads to computed cathode surface temperature values that are appreciably lower than the melting temperature of tungsten even in the quasi-stationary case. This means that pure tungsten cathodes of atmospheric-pressure argon arcs can operate without melting, in contradiction with experiments.
  • Bifurcations of current transfer through a collisional sheath with ionization and self-organization on glow cathodes
    Publication . Benilov, M. S.
    A bifurcation analysis is performed of a dc glow discharge between parallel electrodes and of a dc near cathode space-charge sheath bordering a uniform plasma column. A model of plasma is considered with a single ion species and motion of the charged particles dominated by drift. Bifurcation points are found at which steady-state modes with spots on the cathode branch off from the abnormal mode or from the mode corre sponding to the falling section of the current-density–voltage characteristic. In both discharge configurations, bifurcations in the abnormal mode have been detected; an unexpected result given that loss of stability and pattern appearance in dc gas discharges are usually associated with a negative differential resistance of the discharge. The conclusion is drawn that the two most important mechanisms governing appearance of patterns on glow cathodes, which are electrostatic mechanism and diffusion, produce competing effects: the former favors appearance of modes with multiple spots, while the latter favors appearance of a mode with one spot. This may explain the appearance in experiments of a normal spot or, alternatively, of patterns with multiple spots.
  • Formation of stationary and transient spots on thermionic cathodes and its prevention
    Publication . Almeida, Pedro G. C.; Benilov, M. S.; Cunha, M. D.
    Spots on cathodes of high-pressure arc discharges induced by a rapid increase in the arc current are studied numerically and experimentally. Appearance of stationary and transient spots is analysed in the context of the general pattern of steady-state modes of current transfer to thermionic cathodes and their stability. Transient spots are studied in experiments with COST-529 standard lamps. Modelling and experimental results are in reasonable agreement. A method to prevent formation of transient spots on cathodes of high-pressure arc discharges by means of short negative rectangular current pulses is proposed and validated both numerically and experimentally. Experimental indications are found that the main mechanism of blackening of burners of HID lamps that accompanies appearance of transient cathode spots is evaporation of the cathode material and not sputtering.
  • Physics of the intermediate layer between a plasma and a collisionless sheath and mathematical meaning of the Bohm criterion
    Publication . Almeida, N. A.; Benilov, M. S.
    A transformation of the ion momentum equation simplifies a mathematical description of the transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic point and weak effects come into play. For this reason, the passage of the ion fluid through the sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different scenarios of asymptotic matching in the plasma-sheath transition is analyzed by means of simple mathematical examples, asymptotic estimates, and numerical calculations. In the case of a collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in the intermediate region between the sheath and the presheath. The value corresponding to this plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye length to the ion mean free path is of the order of 10 3 or smaller. There is no such plateau if the sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.
  • Revisiting theoretical description of the retrograde motion of cathode spots of vacuum arcs
    Publication . Benilov, Mikhail S.; Kaufmann, Helena T. C.; Hartmann, Werner; Benilova, Larissa G.
    A fresh attempt to develop a self-consistent descrip tion of the retrograde motion of cathode spots on volatile cathodes is undertaken. Three potential mechanisms of effect of transversal magnetic field on the distribution of parameters in the spot are studied: the effect of magnetic field on hydrodynamics processes in the spot, in particular, on the formation of liquid-metal jet and the droplet detachment, and the effect of transversal magnetic field over the motion of ions and emitted electrons in the near-cathode space-charge sheath. It is found that for typical conditions of cathode spots in vacuum arcs the effect of magnetic field over the formation of liquid-metal jet and the droplet detachment is negligible; the motion of the ions in the near-cathode space-charge sheath is not disturbed; and the motion of the emitted electrons is disturbed only marginally. Thus, the above-mentioned potential mechanisms are hardly relevant and the first-principle understanding is still missing. A phenomenological description of the retrograde motion is developed as an alternative. The description employs general considerations without relying on specific assumptions and the (only) unknown parameter can be determined from comparison with the experiment.
  • Three-dimensional modeling of self-organization in DC glow microdischarges
    Publication . Almeida, P. G. C.; Benilov, M. S.; Faria, M. J.
    Three-dimensional simulations of self-organization in dc glow microdischarges are reported. The results describe a mode with a normal spot and modes with patterns of multiple spots, qualitatively similar to those observed in experiments with microdischarges in xenon.
  • Simple computation of ignition voltage of self-sustaining gas discharges
    Publication . Almeida, P. G. C.; Almeida, R. M. S.; Ferreira, N. G. C.; Naidis, G. V.; Benilov, M. S.
    A robust, fast, and accurate numerical method is proposed for finding the voltage of the ignition of DC self-sustaining gas discharges in a wide range of conditions. The method is based on physical grounds and builds up from the idea that the ignition of a self-sustaining gas discharge should be associated with a resonance that would occur in a non-self-sustained discharge in the same electrode configuration. Examples of the application of the method are shown for various configurations: parallel-plate discharge, coaxial and wire-to-plane corona discharges, and a discharge along a dielectric surface. The results conform to the conventional Townsend breakdown condition for the parallel-plate configuration and are in good agreement with existing experimental data for the other configurations. The method has the potential of providing a reference point for optimization of the hold-off capability of high-power switchgear operating in low-frequency fields.