Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic DeathPublication . Posadas, Inmaculada; Romero-Castillo, Laura; Ronca, Rosa-Anna; Karpus, Andrii; Mignani, Serge; Majoral, Jean-Pierre; Muñoz-Fernández, Mariángeles; Ceña, ValentinNanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s or Parkinson’s disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.
- Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapyPublication . Mignani, Serge; Shi, Xiangyang; Ceña, Valentin; Rodrigues, João; Tomás, Helena; Majoral, Jean-PierreNanomedicine represents a very significant contribution in current cancer treatment; in addition to surgical intervention, radiation and chemotherapeutic agents that unfortunately also kill healthy cells, inducing highly deleterious and often life-threatening side effects in the patient. Of the numerous nanoparticles used against cancer, gold nanoparticles had been developed for therapeutic applications. Inter alia, a large variety of den drimers, i.e. soft artificial macromolecules, have turned up as non-viral functional nanocarriers for entrapping drugs, imaging agents, and targeting molecules. This review will provide insights into the design, synthesis, functionalization, and development in biomedicine of engineered functionalized hybrid dendrimer-tangled gold nanoparticles in the domain of cancer theranostic. Several aspects are highlighted and discussed such as 1) dendrimer-entrapped gold(0) hybrid nanoparticles for the targeted imaging and treatment of cancer cells, 2) dendrimer encapsulating gold(0) nanoparticles (Au DENPs) for the delivery of genes, 3) Au DENPs for drug delivery applications, 4) dendrimer encapsulating gold radioactive nanoparticles for radiotherapy, and 5) dendrimer/dendron-complexed gold(III) nanoparticles as technologies to take down cancer cells.
- Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1)Publication . Mignani, Serge; Rodrigues, João; Roy, René; Shi, Xiangyang; Ceña, Valentin; El Kazzouli, Saïd; Majoral, Jean-PierreDendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions that can be readily modified with a range of functional groups, thus modifying their physicochemical and biological properties. In nanomedicine, dendrimers can be used as vectors for the targeted delivery strategy of a variety of biologically active agents or can be used as drug per se. In the future, it will be necessary to designate and develop 'safe' dendrimers, which is currently a crucial concern. Here, we analyze the key in vitro physicochemical parameters to be considered for preclinical evaluation of biomedical dendrimers.
- Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: key factor analysis (Part 2)Publication . Mignani, Serge; Rodrigues, João; Roy, René; Shi, Xiangyang; Ceña, Valentin; El Kazzouli, Saïd; Majoral, Jean-PierreIn nanomedicine, the widespread concern of nanoparticles in general, and dendrimers, in particular, is the analysis of key in-vivo physicochemical parameters to ensure the preclinical and clinical development of 'safe' bioactive nanomaterials. It is clear that for biomedical applications, biocompatible dendrimers, used as nanocarriers or active per se, should be devoid of toxicity and immunogenicity, and have adequate PK/PD behaviors (adequate exposure) in order to diffuse in different tissues. Functionalization of dendrimers has a dramatic effect on in-vivo physicochemical parameters. In this review, we highlighted key in-vivo physicochemical properties, based on data from biochemical, cellular and animal models, to provide biocompatible dendrimers. Up-to-date, only scarce studies have been described on this topic.
- Dendrimers toward translational nanotherapeutics: concise key step analysisPublication . Mignani, Serge; Shi, Xiangyang; Rodrigues, João; Roy, René; Muñoz-Fernández, Ángeles; Ceña, Valentin; Majoral, Jean PierreThe goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.