Browsing by Author "Mostafa, Sheikh Shanawaz"
Now showing 1 - 10 of 27
Results Per Page
Sort Options
- An oximetry based wireless device for sleep apnea detectionPublication . Mendonça, Fabio; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado; Ravelo-García, Antonio G.Sleep related disorders can severely disturb the quality of sleep. Among these disorders, obstructive sleep apnea (OSA) is highly prevalent and commonly undiagnosed. Polysomnography is considered to be the gold standard exam for OSA diagnosis. Even though this multi-parametric test provides highly accurate results, it is time consuming, labor-intensive, and expensive. A non-invasive and easy to self-assemble home monitoring device was developed to address these issues. The device can perform the OSA diagnosis at the patient’s home and a specialized technician is not required to supervise the process. An automatic scoring algorithm was developed to examine the blood oxygen saturation signal for a minute-by-minute OSA assessment. It was performed by analyzing statistical and frequency-based features that were fed to a classifier. Afterward, the ratio of the number of minutes classified as OSA to the time in bed in minutes was compared with a threshold for the global (subject-based) OSA diagnosis. The average accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for the minute-by-minute assessment were, respectively, 88%, 80%, 91%, and 0.86. The subject-based accuracy was 95%. The performance is in the same range as the best state of the art methods for the models based only on the blood oxygen saturation analysis. Therefore, the developed model has the potential to be employed in clinical analysis.
- Automated Aviation Wind Nowcasting: Exploring Feature-Based Machine Learning MethodsPublication . Alves, Décio; Mendonça, Fábio; Mostafa, Sheikh Shanawaz; Dias, Fernando MorgadoWind factors significantly influence air travel, and extreme conditions can cause operational disruptions. Machine learning approaches are emerging as a valuable tool for predicting wind pat terns. This research, using Madeira International Airport as a case study, delves into the effectiveness of feature creation and selection for wind nowcasting, focusing on predicting wind speed, direction, and gusts. Data from four sensors provided 56 features to forecast wind conditions over intervals of 2, 10, and 20 min. Five feature selection techniques were analyzed, namely mRMR, PCA, RFECV, GA, and XGBoost. The results indicate that combining new wind features with optimized feature selection can boost prediction accuracy and computational efficiency. A strong spatial correlation was observed among sensors at different locations, suggesting that the spatial-temporal context enhances predictions. The best accuracy for wind speed forecasts yielded a mean absolute percentage error of 0.35%, 0.53%, and 0.63% for the three time intervals, respectively. Wind gust errors were 0.24%, 0.33%, and 0.38%, respectively, while wind direction predictions remained challenging with errors above 100% for all intervals.
- Automatic Detection of a Phases for CAP ClassificationPublication . Mendonça, Fábio; Fred, Ana; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado; Ravelo-García, Antonio G.The aim of this study is to develop an automatic detector of the cyclic alternating pattern by first detecting the activation phases (A phases) of this pattern, analysing the electroencephalogram during sleep, and then applying a finite state machine to implement the final classification. A public database was used to test the algorithms and a total of eleven features were analysed. Sequential feature selection was employed to select the most relevant features and a post processing procedure was used for further improvement of the classification. The classification of the A phases was produced using linear discriminant analysis and the average accuracy, sensitivity and specificity was, respectively, 75%, 78% and 74%. The cyclic alternating pattern detection accuracy was 75%. When comparing with the state of the art, the proposed method achieved the highest sensitivity but a lower accuracy since the fallowed approach was to keep the REM periods, contrary to the method that is used in the majority of the state of the art publications which leads to an increase in the overall performance. However, the approach of this work is more suitable for automatic system implementation since no alteration of the EEG data is needed.
- Design and Optimization of ECG Modeling for Generating Different Cardiac DysrhythmiasPublication . Awal, Md. Abdul; Mostafa, Sheikh Shanawaz; Ahmad, Mohiuddin; Alahe, Mohammad Ashik; Rashid, Mohd Abdur; Kouzani, Abbas Z.; Mahmud, M. A. ParvezThe electrocardiogram (ECG) has significant clinical importance for analyzing most cardio vascular diseases. ECGs beat morphologies, beat durations, and amplitudes vary from subject to subject and diseases to diseases. Therefore, ECG morphology-based modeling has long-standing research interests. This work aims to develop a simplified ECG model based on a minimum number of parameters that could correctly represent ECG morphology in different cardiac dysrhythmias. A simple mathematical model based on the sum of two Gaussian functions is proposed. However, fit ting more than one Gaussian function in a deterministic way has accuracy and localization problems. To solve these fitting problems, two hybrid optimization methods have been developed to select the optimal ECG model parameters. The first method is the combination of an approximation and global search technique (ApproxiGlo), and the second method is the combination of an approximation and multi-start search technique (ApproxiMul). The proposed model and optimization methods have been applied to real ECGs in different cardiac dysrhythmias, and the effectiveness of the model performance was measured in time, frequency, and the time-frequency domain. The model fit different types of ECG beats representing different cardiac dysrhythmias with high correlation coeffi cients (>0.98). Compared to the nonlinear fitting method, ApproxiGlo and ApproxiMul are 3.32 and 7.88 times better in terms of root mean square error (RMSE), respectively. Regarding optimization, the ApproxiMul performs better than the ApproxiGlo method in many metrics. Different uses of this model are possible, such as a syntactic ECG generator using a graphical user interface has been developed and tested. In addition, the model can be used as a lossy compression with a variable compression rate. A compression ratio of 20:1 can be achieved with 1 kHz sampling frequency and 75 beats per minute. These optimization methods can be used in different engineering fields where the sum of Gaussians is used.
- Full image-processing pipeline in field-programmable gate array for a small endoscopic cameraPublication . Mostafa, Sheikh Shanawaz; Sousa, L. Natércia; Ferreira, Nuno Fábio; Sousa, Ricardo M.; Santos, João; Wäny, Martin; Dias, F. MorgadoEndoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm × 1 mm × 1.65 mm is used. Due to the physical prop erties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.
- Graphical User Interface for the Development of Probabilistic Convolutional Neural NetworksPublication . Chaves, Aníbal; Mendonça, Fábio; Mostafa, Sheikh Shanawaz; Dias, Fernando MorgadoThrough the development of artificial intelligence, some capabilities of human beings have been replicated in computers. Among the developed models, convolutional neural networks stand out considerably because they make it possible for systems to have the inherent capabilities of humans, such as pattern recognition in images and signals. However, conventional methods are based on deterministic models, which cannot express the epistemic uncertainty of their predictions. The alternative consists of probabilistic models, although these are considerably more difficult to develop. To address the problems related to the development of probabilistic networks and the choice of network architecture, this article proposes the development of an application that allows the user to choose the desired architecture with the trained model for the given data. This application, named “Graphical User Interface for Probabilistic Neural Networks”, allows the user to develop or to use a standard convolutional neural network for the provided data, with networks already adapted to implement a probabilistic model. Contrary to the existing models for generic use, which are deterministic and already pre-trained on databases to be used in transfer learning, the approach followed in this work creates the network layer by layer, with training performed on the provided data, originating a specific model for the data in question.
- Heuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern DetectionPublication . Mendonça, Fábio; Mostafa, Sheikh Shanawaz; Freitas, Diogo; Dias, Fernando Morgado; Ravelo-García, Antonio G.Methodologies for automatic non-rapid eye movement and cyclic alternating pattern analysis were proposed to examine the signal from one electroencephalogram monopolar derivation for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments. A population composed of subjects free of neurological disorders and subjects diagnosed with sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye movement and A phase estimations, examining a one-dimension convolutional neural network (fed with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram signal or with proposed features), and a feed-forward neural network (fed with proposed features), along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter tuning algorithms were developed to optimize the classifiers. The model with long short-term memory fed with proposed features was found to be the best, with accuracy and area under the receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification, while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic alternating pattern rate percentage error was 22%.
- Implementation Strategy of Convolution Neural Networks on Field Programmable Gate Arrays for Appliance Classification Using the Voltage and Current (V-I) TrajectoryPublication . Baptista, Darío; Mostafa, Sheikh Shanawaz; Pereira, Lucas; Sousa, Leonel; Dias, Fernando MorgadoSpecific information about types of appliances and their use in a specific time window could help determining in details the electrical energy consumption information. However, conventional main power meters fail to provide any specific information. One of the best ways to solve these problems is through non-intrusive load monitoring, which is cheaper and easier to implement than other methods. However, developing a classifier for deducing what kind of appliances are used at home is a difficult assignment, because the system should identify the appliance as fast as possible with a higher degree of certainty. To achieve all these requirements, a convolution neural network implemented on hardware was used to identify the appliance through the voltage and current (V-I) trajectory. For the implementation on hardware, a field programmable gate array (FPGA) was used to exploit processing parallelism in order to achieve optimal performance. To validate the design, a publicly available Plug Load Appliance Identification Dataset (PLAID), constituted by 11 different appliances, has been used. The overall average F-score achieved using this classifier is 78.16% for the PLAID 1 dataset. The convolution neural network implemented on hardware has a processing time of approximately 5.7 ms and a power consumption of 1.868 W.
- Machine learning system for commercial banana harvestingPublication . Hayat, Ahatsham; Baglat, Preety; Mendonça, Fábio; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado; Baglat, Preety; Silva Mendonça, Fábio Rúben; Morgado-Dias, FernandoAbstract The conventional process of visual detection and manual harvesting of the banana bunch has been a known problem faced by the agricultural industry. It is a laborious activity associated with inconsistency in the inspection and grading process, leading to post-harvest losses. Automated fruit harvesting using computer vision empowered by deep learning could significantly impact the visual inspection process domains, allowing consistent harvesting and grading. To achieve the goal of the industry-level harvesting process, this work collects data from professional harvesters from the industry. It investigates six state-of-the-art architectures to find the best solution. 2,685 samples were collected from four different sites with expert opinions from industry harvesters to cut (or harvest) and keep (or not harvest) the banana brunch. Comparative results showed that the DenseNet121 architecture outperformed the other examined architectures, reaching a precision, recall, F1 score, accuracy, and specificity of 85%, 82%, 82%, 83%, and 83%, respectively. In addition, an understanding of the underlying black box nature of the solution was visualized and found adequate. This visual interpretation of the model supports human expert’s criteria for harvesting. This system can assist or replace human experts in the field.
- A method for sleep quality analysis based on CNN ensemble with implementation in a portable wireless devicePublication . Mendonça, Fábio; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado; Julia-Serda, Gabriel; Ravelo-Garcia, Antonio G.The quality of sleep can be affected by the occurrence of a sleep related disorder and, among these disorders, obstructive sleep apnea is commonly undiagnosed. Polysomnography is considered to be the gold standard for sleep analysis. However, it is an expensive and labor-intensive exam that is unavailable to a large group of the world population. To address these issues, the main goal of this work was to develop an automatic scoring algorithm to analyze the single-lead electrocardiogram signal, performing a minute-by-minute and an overall estimation of both quality of sleep and obstructive sleep apnea. The method employs a cross-spectral coherence technique which produces a spectrographic image that fed three one-dimensional convolutional neural networks for the classification ensemble. The predicted quality of sleep was based on the electroencephalogram cyclic alternating pattern rate, a sleep stability metric. Two methods were developed to indirectly evaluate this metric, creating two sleep quality predictions that were combined with the sleep apnea diagnosis to achieve the final global sleep quality estimation. It was verified that the quality of sleep of the nineteen tested subjects was correctly identified by the proposed model, advocating the significance of clinical analysis. The model was implemented in a non-invasive and simple to self-assemble device, producing a tool that can estimate the quality of sleep and diagnose the obstructive sleep apnea at the patient’s home without requiring the attendance of a specialized technician. Therefore, increasing the accessibility of the population to sleep analysis.
- «
- 1 (current)
- 2
- 3
- »