Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 47
  • Is it necessary to show virtual limbs in action observation neurorehabilitation systems?
    Publication . Modroño, Cristián; Bermúdez, Sergi; Cameirão, Mónica; Pereira, Fábio; Paulino, Teresa; Marcano, Francisco; Hernández-Martín, Estefanía; Plata-Bello, Julio; Palenzuela, Nereida; Núñez-Pádron, Daniel; Pérez-González, José M; González-Mora, José L
    Action observation neurorehabilitation systems are usually based on the observation of a virtual limb performing different kinds of actions. In this way, the activity in the frontoparietal Mirror Neuron System is enhanced, which can be helpful to rehabilitate stroke patients. However, the presence of limbs in such systems might not be necessary to produce mirror activity, for example, frontoparietal mirror activity can be produced just by the observation of virtual tool movements. The objective of this work was to explore to what point the presence of a virtual limb impacts the Mirror Neuron System activity in neurorehabilitation systems.
  • Augmented Human Assistance (AHA)
    Publication . Bermúdez i Badia, Sergi; Odekerken-Schröder, Gaby; Mahr, Dominik; Čaić, Martina; Lee, Min Hun; Siewiorek, Dan; Smailagic, Assim; Gamboa, Hugo; Belo, David; Carnide, Maria Filomena Araújo da Costa Cruz; Baptista, Maria de Fátima Marcelina; Simão, Hugo; Avelino, João; Sousa, Honorato; Paulino, Teresa; Gonçalves, Afonso; Cardona, John Muñoz; Cameirão, Mónica S.; Bernardino, Alexandre; Gouveia, Élvio Rúbio
    Aging and sedentarism are two main challenges for social and health systems in modern societies. To face these challenges a new generation of ICT based solutions is being developed to promote active aging, prevent sedentarism and find new tools to support the large populations of patients that suffer chronic conditions as result of aging. Such solutions have the potential to transform healthcare by optimizing resource allocation, reducing costs, improving diagno ses and enabling novel therapies, thus increasing quality of life. The primary goal of the “AHA: Augmented Human Assistance” project is to de velop novel assistive technologies to promote exercise among the elderly and patients of motor disabilities. For exercise programs to be effective, it is essential that users and patients comply with the prescribed schedule and perform the ex ercises following established protocols. Until now this has been achieved by hu man monitoring in rehabilitation and therapy session, where the clinicians or therapists permanently accompany users or patient. In many cases, exercises are prescribed for home performance, in which case it is not possible to validate their execution. In this context, the AHA project is an integrative and cross-discipli nary approach of 4 Portuguese universities, the CMU, and 2 Portuguese industry partners, that combines innovation and fundamental research in the areas of hu man-computer interaction, robotics, serious games and physiological computing (see partner list in Appendix A). In the project, we capitalize on recent innova tions and aim at enriching the capabilities and range of application of assistive devices via the combination of (1) assistive robotics; (2) technologies that use well-understood motivational techniques to induce people to do their exercises in the first place, and to do them correctly and completely; (3) tailored and relevant guidance in regard to health care and social support and activities; and (4) tech nologies to self-monitoring and sharing of progress with health-care provider enabling clinicians to fine-tune the exercise regimen to suit the participant’s ac tual progress. We highlight the development of a set of exergames (serious games controlled by the movement of the user’s body limbs) specifically designed for the needs of the target population according to best practices in sports and human kinetics sciences. The games can be adapted to the limitations of the users (e.g. to play in a sitting position) so a large fraction of the population can benefit from them. The games can be executed with biofeedback provided from wearable sensors, to pro duce more controlled exercise benefits. The games can be played in multi-user settings, either in cooperative or competitive mode, to promote the social rela tions among players. The games contain regional motives to trigger memories from the past and other gamification techniques that keep the users involved in the exercise program. The games are projected in the environment through aug mented reality techniques that create a more immersive and engaging experience than conventional displays. Virtual coach techniques are able to monitor the cor rectness of the exercise and provide immediate guidance to the user, as well as providing reports for therapists. A socially assistive robot can play the role of the coach and provide an additional socio-cognitive dimension to the experience to complement the role of the therapist. A web service that records the users’ per formances and allows the authorized therapists to access and configure the exer cise program provides a valuable management tool for caregivers and clinical staff. It can also provide a social network for players, increasing adherence to the therapies. We have performed several end-user studies that validate the proposed ap proaches. Together, or in isolation, these solutions provide users, caregivers, health professionals and institutions, valuable tools for health promotion, disease monitoring and prevention.
  • The use of game modes to promote engagement and social involvement in multi-user serious games: a within-person randomized trial with stroke survivors
    Publication . Pereira, Fábio; Bermúdez i Badia, Sergi; Jorge, Carolina; Cameirão, Mónica S.
    Serious games are promising for stroke rehabilitation, with studies showing a positive impact on reducing motor and cognitive defcits. However, most of the evidence is in the context of single-user rehabilitation, and little is known concerning the impact in multi-user settings. This study evaluates the impact that diferent game modes can have on engagement and social involvement during a two-user game. Specifcally, we want to under stand the benefts of game modalities based on competition, co-activation, and collaboration and analyze the infu ence of diferent motor and cognitive defcits and personality traits. Methods: We developed a two-player setup—using tangible objects and a large screen interactive table—for upper limb rehabilitation purposes. We implemented a game that, while keeping the same basic mechanics, can be played in the three diferent modes (Competitive, Co-active, and Collaborative). We ran a within-person randomized study with 21 stroke survivors that were paired and played the game in its three versions. We used the Game Experi ence Questionnaire—Core Module to assess engagement and the Social Presence Module to assess Social Involve ment. For personality, motor, and cognitive function, users answered the International Personality Item Pool (short version), Fugl-Meyer Assessment—Upper Extremity, Modifed Ashworth Scale, and Montreal Cognitive Assessment, respectively. Results: The Collaborative mode promoted signifcantly more Behavioral Involvement. The Competitive mode pro moted more Flow and Challenge than the Co-active mode with participants with better cognitive performance, with low extraversion, or with higher motor skills. Participants with higher cognitive defcits reported more Competence with the Co-active mode. Conclusions: Our results indicate that, for multi-user motor rehabilitation settings, the collaborative mode is the more appropriate gaming approach to promote social involvement, showing a high potential for increasing adher ence and efectiveness of therapy. Additionally, we show that a player’s motor and cognitive ability and personality should be considered when designing personalized tasks for multiplayer settings.
  • Automating senior fitness testing through gesture detection with depth sensors
    Publication . Gonçalves, A. R.; Cameirão, M. S.; Bermúdez i Badia, S.; Gouveia, E. R.
    Sedentarism has a negative impact on health, life expectancy and quality of life, especially in older adults. The assessment of functional fitness helps evaluating the effects of ageing and sedentarism, and this assessment is typically done through validated battery tests such as the Senior Fitness Test (SFT). In this paper we present a computer-based system for assisting and automating SFT administration and scoring in the elderly population. Our system assesses lower body strength, agility and dynamic balance, and aerobic endurance making use of a depth sensor for body tracking and multiple gesture detectors for the evaluation of movement execution. The system was developed and trained with optimal data collected in laboratory conditions and its performance was evaluated in a real environment with 22 elderly end-users, and compared to traditional SFT administered by an expert. Results show a high accuracy of our system in identifying movement patterns (>95%) and consistency with the traditional fitness assessment method. Our results suggest that this technology is a viable low cost option to assist in the fitness assessment of elderly that could be deployed for at home use in the context of fitness programs.
  • The efficacy of a multicomponent functional fitness program based on exergaming on cognitive functioning of healthy older adults: a randomized controlled trial
    Publication . Gouveia, Élvio R.; Smailagic, Asim; Ihle, Andreas; Marques, Adilson; Gouveia, Bruna R.; Cameirão, Mónica; Sousa, Honoratoé Santos Correia de; Kliegel, Matthias; Siewiorek, Daniel
    Background and Objectives: Regular physical exercise can attenuate age-related cognitive decline. This study aimed to investigate the effect of a physical exercise multicomponent training based on exergames on cognitive functioning (CF) in older adults. Research Design and Methods: This randomized controlled trial included older adults aged 61–78. Participants were randomly allocated to an intervention group (IG; n = 15) or active control group (CG; n = 16). The IG was exposed to a combined training with traditional exercise and exergaming, twice a week over a period of 12 weeks. The CG performed only traditional sessions. CF was assessed by the Cognitive Telephone Screening Instrument. The time points for assessment were at zero (pretest), 12 (posttest), and 17 weeks (follow-up). Results: Active CG and IG increased from pretest to posttest in short-term memory (STM), long-term memory (LTM), and Cognitive Telephone Screening Instrument total score 1.98 > Z < 3.00, ps < .005, with moderately large positive effects (.36 > r < .54). A significant increase was seen from posttest to follow-up in STM, Z = 2.74, p = .006, and LTM, Z = 2.31, p < .021, only in IG. Across the two time periods posttest to follow-up, there were significant interaction effects between program type and time for STM (p = .022, η2 p = .17) and LTM (p = .004, η2 p = .25), demonstrating a more beneficial effect of the exergames intervention compared to the CG. Discussion and Implications: The integration of exergaming in a multicomponent functional fitness exercise might have the potential to maintain and improve CF (in particular, STM and LTM) in older adults.
  • Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system
    Publication . Cameirão, Mónica da Silva; Bermúdez i Badia, Sergi; Duarte, Esther; Verschure, Paul F. M. J.
    Given the incidence of stroke, the need has arisen to consider more self-managed rehabilitation approaches. A promising technology is Virtual Reality (VR). Thus far, however, it is not clear what the benefits of VR systems are when compared to conventional methods. Here we investigated the clinical impact of one such system, the Rehabilitation Gaming System (RGS), on the recovery time course of acute stroke. RGS combines concepts of action execution and observation with an automatic individualization of training. METHODS. Acute stroke patients (n = 8) used the RGS during 12 weeks in addition to conventional therapy. A control group (n = 8) performed a time matched alternative treatment, which consisted of intense occupational therapy or non-specific interactive games. RESULTS. At the end of the treatment, between-group comparisons showed that the RGS group displayed significantly improved performance in paretic arm speed that was matched by better performance in the arm subpart of the Fugl-Meyer Assessment Test and the Chedoke Arm and Hand Activity Inventory. In addition, the RGS group presented a significantly faster improvement over time for all the clinical scales during the treatment period. CONCLUSIONS. Our results suggest that rehabilitation with the RGS facilitates the functional recovery of the upper extremities and that this system is therefore a promising tool for stroke neurorehabilitation.
  • The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke
    Publication . Cameirão, Mónica S.; Bermúdez i Badia, Sergi; Duarte, Esther; Frisoli, Antonio; Verschure, Paul F. M. J.
    Background and Purpose—Although there is strong evidence on the beneficial effects of virtual reality (VR)-based rehabilitation, it is not yet well understood how the different aspects of these systems affect recovery. Consequently, we do not exactly know what features of VR neurorehabilitation systems are decisive in conveying their beneficial effects. Methods—To specifically address this issue, we developed 3 different configurations of the same VR-based rehabilitation system, the Rehabilitation Gaming System, using 3 different interface technologies: vision-based tracking, haptics, and a passive exoskeleton. Forty-four patients with chronic stroke were randomly allocated to one of the configurations and used the system for 35 minutes a day for 5 days a week during 4 weeks. Results—Our results revealed significant within-subject improvements at most of the standard clinical evaluation scales for all groups. Specifically we observe that the beneficial effects of VR-based training are modulated by the use/nonuse of compensatory movement strategies and the specific sensorimotor contingencies presented to the user, that is, visual feedback versus combined visual haptic feedback. Conclusions—Our findings suggest that the beneficial effects of VR-based neurorehabilitation systems such as the Rehabilitation Gaming System for the treatment of chronic stroke depend on the specific interface systems used. These results have strong implications for the design of future VR rehabilitation strategies that aim at maximizing functional outcomes and their retention. Clinical Trial Registration—This trial was not registered because it is a small clinical study that evaluates the feasibility of prototype devices.
  • Evaluating body tracking interaction in floor projection displays with an elderly population
    Publication . Cameirão, Mónica; Gonçalves, Afonso
    The recent development of affordable full body tracking sensors has made this technology accessible to millions of users and gives the opportunity to develop new natural user interfaces. In this paper we focused on developing 2 natural user interfaces that could easily be used by an elderly population for interaction with a floor projection display. One interface uses feet positions to control a cursor and feet distance to activate interaction. In the second interface, the cursor is controlled by ray casting the forearm into the projection and interaction is activated by hand pose. The interfaces were tested by 19 elderly participants in a point-and-click and a drag-and-drop task using a between-subjects experimental design. The usability and perceived workload for each interface was assessed as well as performance indicators. Results show a clear preference by the participants for the feet controlled interface and also marginal better performance for this method.
  • Measured and perceived physical responses in multidimensional fitness training through exergames in older adults
    Publication . Munoz, J. E.; Gonçalves, A.; Gouveia, E. R.; Cameirão, M. S.; Bermúdez i Badia, S.
    Exergames have been used to increase physical activity levels to produce health benefits in older adults. However, only a small number of studies have quantified the physical activity levels produced by custom-made Exergames and their capacity to elicit recommended levels of exercise. This study investigates the effectiveness of custom-made Exergames, designed for multidimensional fitness training, in eliciting recommended levels of exercise. We rely on both objective (accelerometry) and subjective (perceived exertion) information collected in two different modalities of exercise, consisting of 40- minutes sessions: Exergaming and conventional training (Control). A between-subjects analysis was done involving two groups of active older adults (n=33). Participants in the Control Between condition performed physical activity in conventional group fitness training, while the intervention group used individualized Exergaming as training modality. In addition, a sub-group of the Exergaming participants also performed a conventional training session (Control-Within), which enabled a within-subjects comparison. Results show that participants spent significantly more time in moderate-to-vigorous intensities during Exergaming, interestingly, perceiving significantly lower exertion levels. The between-subjects analysis only presented statistically significant differences for the perceived exertion scale. This study helps to unveil the impact of custom-made Exergames in physical activity levels during training when compared to conventional training for the older adult population.
  • An integrative virtual reality cognitive-motor intervention approach in stroke rehabilitation: a pilot study
    Publication . Faria, A. L.; Vourvopoulos, A.; Cameirão, M. S.; Fernandes, J. C.; Bermúdez i Badia, Sergi
    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patient’s capability to live independently. In post-stroke it is imperative to initiate a process of intensive rehabilitation and personalized objectives to maximize functional cognitive and motor recovery. Virtual Reality (VR) technology is being widely applied to rehabilitation of stroke, however, not in an integrative manner. Like traditional rehabilitation, these new tools mostly focus either in the cognitive or in the motor domain, which can take to a reduced impact in the performance of activities of daily living, most of them dual-task. Assuming the existence of cognitive and motor recovery interdependence, RehabNet proposes a holistic approach. Here we present a one-month long pilot study with three stroke patients whose training was a game-like VR version of the Toulouse-Piéron cancellation test, adapted to be performed by repetitive arm reaching movements. A standardized motor and cognitive assessment was performed pre and post intervention. The first results on this intervention support a holistic model for rehabilitation of stroke patients, sustaining interdependence on cognitive and motor recovery. Furthermore, we observed that the impact of the integrative VR approach generalizes to the performance of the activities of daily living.