Repository logo
 

Search Results

Now showing 1 - 10 of 21
  • Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: a concise review
    Publication . Song, Cong; Shen, Mingwu; Rodrigues, João; Mignani, Serge; Majoral, Jean-Pierre; Shi, Xiangyang
    Poly(amidoamine) (PAMAM) dendrimers, as a family of synthetic macromolecules with highly branched interiors, abundant surface functional groups, and well-controlled architecture, have received immense scientific and technological interests for a range of biomedical applications, in particular cancer nanome dicine. However, due to the drawbacks of single-generation dendrimers with a quite small size (e.g., gen eration 5 (G5) PAMAM dendrimer has a size of 5.4 nm) such as limited drug loading capacity, restricted tumor passive targeting based on enhanced permeability and retention effect, and lack of versatility to render them with stimuli-responsiveness, superstructured dendrimeric nanoconstructs (SDNs) have been designed to break through these obstacles in their applications in cancer nanomedicine. Here, we review the recent advances related to the creation of SDNs such as dendrimer dumbbells, core–shell tecto den drimers, dendrimer nanoclusters (NCs), dendrimer nanogels and dendrimer-templated hybrid NCs, and how these SDNs have been designed as nanoplatforms for different biomedical applications related to cancer nanomedicine including MR imaging, drug/gene delivery, combination therapy and theranostics. This review concisely describes the latest key developments in the field and also discusses the possible challenges and perspectives for translation applications.
  • Recent therapeutic applications of the theranostic principle with dendrimers in oncology
    Publication . Mignani, Serge; Rodrigues, João; Tomás, Helena; Caminade, Anne-marie; Laurent, Régis; Shi, Xiangyang; Majoral, Jean-Pierre
    At the intersection between treatment and diagnosis,nanoparticlestechnologiesarestronglyimpactingthe development of both therapeutic and diagnostic agents. Consequently, the development of novel modalities for concomitant noninvasive therapy and diagnostics known as theranostics as a single platform has gained significant interests. These multifunctional theranostic platforms include carbon-based nanomaterials (e.g., carbon nanotubes), drug conjugates, aliphatic polymers, micelles, vesicles, core-shell nanoparticles,microbubblesanddendrimersbearingdifferent contrastagentsanddrugs,suchascytotoxiccompoundsinthe oncology domain. Dendrimers emerged as a new class of highly tunable hyperbranched polymers, and have been developed as useful theranostic platforms. Magnetic resonance imaging, gamma scintigraphy, computed tomography and optical imaging are the main techniques developed with dendrimers in the theranostic domain in oncology. Different imaging agents have been used such as Gd(III), 19F, Fe2O3 (MRI), 76Br (PET), 111In, 88Y, 153Gd, 188Re, 131I (SPECT), 177Lu, gold (CT) and boronated groups, siliconnaphthalocyanines, dialkylcarbocyanines and QDs (optical imaging dyes).
  • Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death
    Publication . Posadas, Inmaculada; Romero-Castillo, Laura; Ronca, Rosa-Anna; Karpus, Andrii; Mignani, Serge; Majoral, Jean-Pierre; Muñoz-Fernández, Mariángeles; Ceña, Valentin
    Nanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s or Parkinson’s disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.
  • Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy
    Publication . Mignani, Serge; Shi, Xiangyang; Ceña, Valentin; Rodrigues, João; Tomás, Helena; Majoral, Jean-Pierre
    Nanomedicine represents a very significant contribution in current cancer treatment; in addition to surgical intervention, radiation and chemotherapeutic agents that unfortunately also kill healthy cells, inducing highly deleterious and often life-threatening side effects in the patient. Of the numerous nanoparticles used against cancer, gold nanoparticles had been developed for therapeutic applications. Inter alia, a large variety of den drimers, i.e. soft artificial macromolecules, have turned up as non-viral functional nanocarriers for entrapping drugs, imaging agents, and targeting molecules. This review will provide insights into the design, synthesis, functionalization, and development in biomedicine of engineered functionalized hybrid dendrimer-tangled gold nanoparticles in the domain of cancer theranostic. Several aspects are highlighted and discussed such as 1) dendrimer-entrapped gold(0) hybrid nanoparticles for the targeted imaging and treatment of cancer cells, 2) dendrimer encapsulating gold(0) nanoparticles (Au DENPs) for the delivery of genes, 3) Au DENPs for drug delivery applications, 4) dendrimer encapsulating gold radioactive nanoparticles for radiotherapy, and 5) dendrimer/dendron-complexed gold(III) nanoparticles as technologies to take down cancer cells.
  • Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo
    Publication . Posadas, I.; Romero-Castillo, L.; El Brahmi, N.; Manzanares, D.; Mignani, S.; Majoral, J.-P.; Ceña, V.
    Inflammation is part of the physiological response of the organism to infectious diseases caused by organisms such as bacteria, viruses, fungi, or parasites. Innate immunity, mediated by mono nuclear phagocytes, including monocytes and macrophages, is a first line of defense against infectious diseases and plays a key role triggering the delayed adaptive response that ensures an efficient defense against pathogens. Monocytes and macrophages stimu lation by pathogen antigens results in activation of different signaling pathways leading to the release of proinflammatory cyto kines. However, inflammation can also participate in the pathogenesis of several diseases, the autoimmune diseases that represent a relevant burden for human health. Dendrimers are branched, multivalent nanoparticles with a well-defined structure that have a high potential for biomedical applications. To explore new approaches to fight against the negative aspects of inflammation, we have used neutral high-generation phosphorus dendrimers bearing 48 (G3) or 96 (G4) bisphosphonate groups on their surface. These dendrimers show no toxicity and have good solubility and chemical stability in aqueous solutions. Here, we present data indicating that neutral phosphorus dendrimers show impressive antiinflammatory activities both in vitro and in vivo. In vitro, these dendrimers reduced the secretion of proinflammatory cytokines from mice and human monocyte derived macrophages. In addition, these molecules present efficient antiinflammatory activity in vivo in a mouse model of subchronic inflammation. Taken together, these data suggest that neutral G3- G4 phosphorus dendrimers have strong potential applications in the therapy of inflammation and, likely, of autoimmune diseases.
  • Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review
    Publication . Sun, Huxiao; Zhan, Mengsi; Mignani, Serge; Shcharbin, Dzmitry; Majoral, Jean-Pierre; Rodrigues, João; Shi, Xiangyang; Shen, Mingwu
    Curcumin (Cur), a traditional Chinese medicine extracted from natural plant rhizomes, has become a candidate drug for the treatment of diseases due to its anti-inflammatory, anticancer, antioxidant, and antibacterial activities. However, the poor water solubility and low bioavailability of Cur limit its therapeutic effects for clinical applications. A variety of nanocarriers have been successfully developed to improve the water solubility, in vivo distribution, and pharmacokinetics of Cur, as well as to enhance the ability of Cur to polarize macrophages and relieve macrophage oxidative stress or anti-apoptosis, thus accelerating the therapeutic effects of Cur on inflammatory diseases. Herein, we review the design and development of diverse Cur nanoformulations in recent years and introduce the biomedical applications and potential therapeutic mechanisms of Cur nanoformulations in common inflammatory diseases, such as arthritis, neurodegenerative diseases, respiratory diseases, and ulcerative colitis, by regulating macrophage behaviors. Finally, the perspectives of the design and preparation of future nanocarriers aimed at efficiently exerting the biological activity of Cur are briefly discussed.
  • Complexing methylene blue with phosphorus dendrimers to increase photodynamic activity
    Publication . Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean; Klajnert-Maculewicz, Barbara
    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer—methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.
  • Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells
    Publication . Li, Aijun; Fan, Yu; Cao, Xueyan; Chen, Liang; Wang, Le; Alves, Carla S.; Mignani, Serge; Majoral, Jean Pierre; Tomás, Helena; Shi, Xiangyang
    A novel bioactive macromolecule based on morpholino-functiona lized phosphorus dendrimers (generation 2, G2-Mor+ ) was devel oped for osteogenic differentiation of mesenchymal stem cells (MSCs). Interestingly, through in vitro tests, it was shown that G2- Mor+ dendrimer can strongly promote the transformation of MSCs into osteoblasts, which implies the potential application of phos phorus de medicine.
  • Endocannabinoid Degradation Enzyme Inhibitors as Potential Antipsychotics: A Medicinal Chemistry Perspective
    Publication . Mangiatordi, Giuseppe Felice; Cavalluzzi, Maria Maddalena; Delre, Pietro; Lamanna, Giuseppe; Lumuscio, Maria Cristina; Saviano, Michele; Majoral, Jean-Pierre; Mignani, Serge; Duranti, Andrea; Lentini, Giovanni
    The endocannabinoid system (ECS) plays a very important role in numerous physiological and pharmacological processes, such as those related to the central nervous system (CNS), including learning, memory, emotional processing, as well pain control, inflammatory and immune response, and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural ligands responsible for these effects is very short. This perspective describes the potential role of the inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), which are mainly responsible for the degradation of endogenous ligands in psychic disorders and related pathologies. The examination was carried out considering both the impact that the classical exogenous ligands such as ∆ 9 -tetrahydrocannabinol (THC) and (−)-trans-cannabidiol (CBD) have on the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability), probably the worst early adverse reaction studied during clinical studies focused on acute toxicity, was predicted, and some of the most used and robust metrics available were considered to select which of the analyzed compounds could be repositioned as possible oral antipsychotics.
  • Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview
    Publication . Gupta, Ria; Sharma, Sumit; Singh, Rohit; Vishwakarma, Ram A.; Mignani, Serge; Singh, Parvinder Pal
    Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving drugs and clinical candidates against a number of diseases, including infections (bacterial, viral, parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and leads published from 1950 to 2021. The present review also presents the miscellaneous examples in each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives is also discussed.