Repository logo
 

Search Results

Now showing 1 - 10 of 10
  • Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: a concise review
    Publication . Song, Cong; Shen, Mingwu; Rodrigues, João; Mignani, Serge; Majoral, Jean-Pierre; Shi, Xiangyang
    Poly(amidoamine) (PAMAM) dendrimers, as a family of synthetic macromolecules with highly branched interiors, abundant surface functional groups, and well-controlled architecture, have received immense scientific and technological interests for a range of biomedical applications, in particular cancer nanome dicine. However, due to the drawbacks of single-generation dendrimers with a quite small size (e.g., gen eration 5 (G5) PAMAM dendrimer has a size of 5.4 nm) such as limited drug loading capacity, restricted tumor passive targeting based on enhanced permeability and retention effect, and lack of versatility to render them with stimuli-responsiveness, superstructured dendrimeric nanoconstructs (SDNs) have been designed to break through these obstacles in their applications in cancer nanomedicine. Here, we review the recent advances related to the creation of SDNs such as dendrimer dumbbells, core–shell tecto den drimers, dendrimer nanoclusters (NCs), dendrimer nanogels and dendrimer-templated hybrid NCs, and how these SDNs have been designed as nanoplatforms for different biomedical applications related to cancer nanomedicine including MR imaging, drug/gene delivery, combination therapy and theranostics. This review concisely describes the latest key developments in the field and also discusses the possible challenges and perspectives for translation applications.
  • Recent therapeutic applications of the theranostic principle with dendrimers in oncology
    Publication . Mignani, Serge; Rodrigues, João; Tomás, Helena; Caminade, Anne-marie; Laurent, Régis; Shi, Xiangyang; Majoral, Jean-Pierre
    At the intersection between treatment and diagnosis,nanoparticlestechnologiesarestronglyimpactingthe development of both therapeutic and diagnostic agents. Consequently, the development of novel modalities for concomitant noninvasive therapy and diagnostics known as theranostics as a single platform has gained significant interests. These multifunctional theranostic platforms include carbon-based nanomaterials (e.g., carbon nanotubes), drug conjugates, aliphatic polymers, micelles, vesicles, core-shell nanoparticles,microbubblesanddendrimersbearingdifferent contrastagentsanddrugs,suchascytotoxiccompoundsinthe oncology domain. Dendrimers emerged as a new class of highly tunable hyperbranched polymers, and have been developed as useful theranostic platforms. Magnetic resonance imaging, gamma scintigraphy, computed tomography and optical imaging are the main techniques developed with dendrimers in the theranostic domain in oncology. Different imaging agents have been used such as Gd(III), 19F, Fe2O3 (MRI), 76Br (PET), 111In, 88Y, 153Gd, 188Re, 131I (SPECT), 177Lu, gold (CT) and boronated groups, siliconnaphthalocyanines, dialkylcarbocyanines and QDs (optical imaging dyes).
  • Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy
    Publication . Mignani, Serge; Shi, Xiangyang; Ceña, Valentin; Rodrigues, João; Tomás, Helena; Majoral, Jean-Pierre
    Nanomedicine represents a very significant contribution in current cancer treatment; in addition to surgical intervention, radiation and chemotherapeutic agents that unfortunately also kill healthy cells, inducing highly deleterious and often life-threatening side effects in the patient. Of the numerous nanoparticles used against cancer, gold nanoparticles had been developed for therapeutic applications. Inter alia, a large variety of den drimers, i.e. soft artificial macromolecules, have turned up as non-viral functional nanocarriers for entrapping drugs, imaging agents, and targeting molecules. This review will provide insights into the design, synthesis, functionalization, and development in biomedicine of engineered functionalized hybrid dendrimer-tangled gold nanoparticles in the domain of cancer theranostic. Several aspects are highlighted and discussed such as 1) dendrimer-entrapped gold(0) hybrid nanoparticles for the targeted imaging and treatment of cancer cells, 2) dendrimer encapsulating gold(0) nanoparticles (Au DENPs) for the delivery of genes, 3) Au DENPs for drug delivery applications, 4) dendrimer encapsulating gold radioactive nanoparticles for radiotherapy, and 5) dendrimer/dendron-complexed gold(III) nanoparticles as technologies to take down cancer cells.
  • Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo
    Publication . Posadas, I.; Romero-Castillo, L.; El Brahmi, N.; Manzanares, D.; Mignani, S.; Majoral, J.-P.; Ceña, V.
    Inflammation is part of the physiological response of the organism to infectious diseases caused by organisms such as bacteria, viruses, fungi, or parasites. Innate immunity, mediated by mono nuclear phagocytes, including monocytes and macrophages, is a first line of defense against infectious diseases and plays a key role triggering the delayed adaptive response that ensures an efficient defense against pathogens. Monocytes and macrophages stimu lation by pathogen antigens results in activation of different signaling pathways leading to the release of proinflammatory cyto kines. However, inflammation can also participate in the pathogenesis of several diseases, the autoimmune diseases that represent a relevant burden for human health. Dendrimers are branched, multivalent nanoparticles with a well-defined structure that have a high potential for biomedical applications. To explore new approaches to fight against the negative aspects of inflammation, we have used neutral high-generation phosphorus dendrimers bearing 48 (G3) or 96 (G4) bisphosphonate groups on their surface. These dendrimers show no toxicity and have good solubility and chemical stability in aqueous solutions. Here, we present data indicating that neutral phosphorus dendrimers show impressive antiinflammatory activities both in vitro and in vivo. In vitro, these dendrimers reduced the secretion of proinflammatory cytokines from mice and human monocyte derived macrophages. In addition, these molecules present efficient antiinflammatory activity in vivo in a mouse model of subchronic inflammation. Taken together, these data suggest that neutral G3- G4 phosphorus dendrimers have strong potential applications in the therapy of inflammation and, likely, of autoimmune diseases.
  • Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1)
    Publication . Mignani, Serge; Rodrigues, João; Roy, René; Shi, Xiangyang; Ceña, Valentin; El Kazzouli, Saïd; Majoral, Jean-Pierre
    Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions that can be readily modified with a range of functional groups, thus modifying their physicochemical and biological properties. In nanomedicine, dendrimers can be used as vectors for the targeted delivery strategy of a variety of biologically active agents or can be used as drug per se. In the future, it will be necessary to designate and develop 'safe' dendrimers, which is currently a crucial concern. Here, we analyze the key in vitro physicochemical parameters to be considered for preclinical evaluation of biomedical dendrimers.
  • Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: key factor analysis (Part 2)
    Publication . Mignani, Serge; Rodrigues, João; Roy, René; Shi, Xiangyang; Ceña, Valentin; El Kazzouli, Saïd; Majoral, Jean-Pierre
    In nanomedicine, the widespread concern of nanoparticles in general, and dendrimers, in particular, is the analysis of key in-vivo physicochemical parameters to ensure the preclinical and clinical development of 'safe' bioactive nanomaterials. It is clear that for biomedical applications, biocompatible dendrimers, used as nanocarriers or active per se, should be devoid of toxicity and immunogenicity, and have adequate PK/PD behaviors (adequate exposure) in order to diffuse in different tissues. Functionalization of dendrimers has a dramatic effect on in-vivo physicochemical parameters. In this review, we highlighted key in-vivo physicochemical properties, based on data from biochemical, cellular and animal models, to provide biocompatible dendrimers. Up-to-date, only scarce studies have been described on this topic.
  • Dendrimers toward translational nanotherapeutics: concise key step analysis
    Publication . Mignani, Serge; Shi, Xiangyang; Rodrigues, João; Roy, René; Muñoz-Fernández, Ángeles; Ceña, Valentin; Majoral, Jean Pierre
    The goal of nanomedicine is to address specific clinical problems optimally, to fight human diseases, and to find clinical relevance to change clinical practice. Nanomedicine is poised to revolutionize medicine via the development of more precise diagnostic and therapeutic tools. The field of nanomedicine encompasses numerous features and therapeutic disciplines. A plethora of nanomolecular structures have been engineered and developed for therapeutic applications based on their multitasking abilities and the wide functionalization of their core scaffolds and surface groups. Within nanoparticles used for nanomedicine, dendrimers as well polymers have demonstrated strong potential as nanocarriers, therapeutic agents, and imaging contrast agents. In this review, we present and discuss the different criteria and parameters to be addressed to prepare and develop druggable nanoparticles in general and dendrimers in particular. We also describe the major requirements, included in the preclinical and clinical roadmap, for NPs/dendrimers for the preclinical stage to commercialization. Ultimately, we raise the clinical translation of new nanomedicine issues.
  • Dendrimers in combination with natural products and analogues as anti-cancer agents
    Publication . Mignani, Serge; Rodrigues, João; Tomás, Helena; Zablocka, Maria; Shi, Xiangyang; Caminade, Anne-marie; Majoral, Jean-Pierre
    For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.
  • Synthesis of onion‐peel nanodendritic structures with sequential functional phosphorus diversity
    Publication . Katir, Nadia; El Brahmi, Nabil; El Kadib, Abdelkrim; Mignani, Serge; Caminade, Anne‐Marie; Bousmina, Mosto; Majoral, Jean Pierre
    The preparation of novel families of phosphorus based macromolecular architectures called “onion peel” phosphorus nanodendritic systems is reported. This con struct is based on the versatility of methods of synthesis using several building blocks and on the capability of these systems to undergo regioselective reactions within the cas cade structure. Sustainable metal-free routes such as the Staudinger reaction or Schiff-base condensation, involving only water and nitrogen as byproducts, allow access to sev eral dendritic macromolecules bearing up to seven different phosphorus units in their backbone, each of them featuring specific reactivity. The presence of the highly aurophilic P= N¢P=S fragment enables selective ligation of Au I within the dendritic framework.
  • Bench-to-bedside translation of dendrimers: reality or utopia? A concise analysis
    Publication . Mignani, Serge; Rodrigues, João; Tomás, Helena; Roy, René; Shi, Xiangyang; Majoral, Jean-Pierre
    Nanomedicine, which is an application of nanotechnologies in healthcare is developed to improve the treatments and lives of patients suffering from a range of disorders and to increase the successes of drug candidates. Within the nanotechnology universe, the remarkable unique and tunable properties of dendrimers have made them promising tools for diverse biomedical applications such as drug delivery, gene therapy and diagnostic. Up-to-date, very few dendrimers has yet gained regulatory approval for systemic administration, why? In this critical review, we briefly focus on the list of desired basic dendrimer requirements for decision-making purpose by the scientists (go/no-go decision), in early development stages, to become clinical candidates, and to move towards Investigational New Drugs (IND) application submission. In addition, the successful translation between research and clinic should be performed by the implementation of a simple roadmap to jump the 'valley of death' successfully.